## Description

**Candidates can get Best Indian Certificate of Secondary Education Class 12th Physics ****(ICSE****) ****Books 2018 also a Top List of ICSE Main Study Materials for 2018-2019 entrance exam in India.**

**ISC Chapterwise Solved Papers Physics class 12th**by Arihant Experts

**I-Succeed 15 Question Sample Papers Isc Examination 2018 Physics (Class-Xii)**by Zafar Md

**Frank ISC Physics papers -Class-XII**by S. Chakraborty

**Oswal Publishers ISC Model Specimen Papers of Physics Class 12 for 2018 Examination**by Panel of Authors

**Syllabus**

**SECTION A**

**1. Electrostatics**

(i) Coulomb’s law, S.I. unit of charge; permittivity of free space.

(ii) Concept of electric field E = F/q_{o}; Gauss’ theorem and its applications.

(iii) Electric dipole; electric field at a point on the axis and perpendicular bisector of a dipole; electric dipole moment; torque on a dipole in a uniform electric field.

(iv) Electric lines of force.

(v) Electric potential and potential energy; potential due to a point charge and due to a dipole; potential energy of an electric dipole in an electric field. Van de Graff generator.

(vi) Capacitance of a conductor C = Q/V, farad; capacitance of a parallel-plate capacitor; C = ε_{0}A/d. Capacitors in series and parallel combinations; effective capacitance and charge distribution. Energy stored

(vii) Dielectrics (elementary ideas only); permittivity and relative permittivity of a dielectric (ε_{r} = ε/ε_{o}). Effects on pd, charge and capacitance. Electric polarisation.

**2. Current Electricity**

(i) Mechanism of flow of current in metals, drift velocity and mobility of electrons, Ohm’s Law and its proof. Resistance and resistivity and their relation to drift velocity of electrons; description of resistivity and conductivity based on electron theory; effect of temperature on resistance, colour coding of resistance.

(ii) Potential difference as the power supplied divided by the current. Ohm’s law (V-I characteristics) and its limitations; Combinations of resistors in series and parallel; Electric energy and power.

(iii) Electromotive force in a cell; internal resistance and back emf. Combination of cells in series, parallel and mixed grouping.

(iv) Kirchoff’s laws and their simple applications to circuits with resistors and sources of emf; Wheatstone bridge, metre-bridge and potentiometer; use to measure potential difference and for comparison of emf and determination of internal resistance of sources of current; use of resistors (shunts and multipliers) in ammeters and voltmeters.

**3. Magnetism**

(i) Magnetic field B, definition from magnetic force on a moving charge; magnetic field lines; magnetic field and magnetic flux density; the earth’s magnetic field and magnetic elements; Magnetic field of a magnetic dipole.

(ii) Properties of dia, para and ferromagnetic substances; susceptibility and relative permeability, hysteresis.

**4. Electromagnetism**

(i) Oersted’s experiment; Biot-Savart law, the tesla; magnetic field near a long straight wire, at the centre of a circular loop, and at a point on the axis of a circular coil carrying current. Amperes circuital law and its application to obtain magnetic field due to a long straight wire and a solenoid.

(ii) Force on a moving charge in a magnetic field; force on a current carrying conductor kept in a magnetic field; force between two long and parallel current carrying wires; definition of ampere based on the force between two current carrying wires. Cyclotron.

(iii) A current loop as a magnetic dipole; magnetic dipole moment; torque on a current loop (magnetic dipole); moving coil galvanometer.

(iv) Electromagnetic induction, magnetic flux and induced emf; Faraday’s laws and Lenz’s law, motional emf; eddy currents.

(v) Mutual and self inductance: the henry. Growth and decay of current in LR and RC circuits (dc) (graphical approach), time constant. Transformer.

(vi) Simple a.c. generators. Basic differences between a.c. and d.c.

**5. Alternating Current Circuits**

(i) Change of voltage and current with time, phase; peak and rms values of voltage and current; their relation in sinusoidal case.

(ii) Variation of voltage and current in a.c. circuits consisting of only a resistor, only an inductor and only a capacitor (phasor representation), phase lag and phase lead.

(iii) The LCR series circuit: phasor diagram, expression for V or I; phase lag/lead; impedance of a series LCR circuit (arrived at by phasor diagram); Special cases for RL and RC circuits.

(iv) Power P associated with LCR circuit = ½V_{o}I_{o} cosφ =V_{rms}I_{rms} cosφ = I_{rms}^{2}R; power absorbed and power dissipated; choke coil (choke and starter); electrical resonance; bandwidth of signals and Q factor; oscillations in an LC circuit (ω = 1/√LC).

**SECTION B**

**6. Wave Optics**

(i) Complete electromagnetic spectrum from radio waves to gamma rays; transverse nature of electromagnetic waves, Huygen’s principle; laws of reflection and refraction from Huygen’s principle.

(ii) Conditions for interference of light, interference of monochromatic light by double slit; Young’s double slit experiment, measurement of wave length.

(iii) Single slit Fraunhofer diffraction (elementary explanation).

(iv) Plane polarised electromagnetic wave (elementary idea), methods of polarisation of light. Brewster’s law; polaroids.

**7. Ray Optics and Optical Instruments**

(i) Reflection of light by spherical mirrors.

(ii) Refraction of light at a plane interface, Snell’s law; total internal reflection and critical angle; total reflecting prisms and optical fibres.

(iii) Refraction through a prism, minimum deviation and derivation of relation between n, A and δ_{min}.

(iv) Refraction at a single spherical surface (relation between n1, n2, u, v and R); refraction through thin lenses (lens maker’s formula and formula relating u, v, f, n, R1 and R2); lens formula, combined focal length of two thin lenses in contact. Combination of lenses and mirrors [Silvering of lens excluded] and magnification. Spherical aberration.

(v) Dispersion; dispersive power; pure and impure spectrum; Scattering of light. Chromatic aberration.

(vi) Simple microscope; Compound microscope and their magnifying power.

(vii) Simple astronomical telescope (refracting and reflecting), magnifying power and resolving power of a simple astronomical telescope.

(viii) Human Eye, Defects of vision and their correction.

**SECTION C**

**8. Electrons and Photons**

(i) Photo electric effect, quantization of radiation; Einstein’s equation; threshold frequency; work function; stopping potential; energy and momentum of a photon. Determination of Planck’s Constant.

(ii) Wave particle duality, De Broglie equation, phenomenon of electron diffraction (qualitative only).

**9. Atoms**

(i) Charge and size of nuclei (α-particle scattering); atomic structure; Bohr’s postulates; radii of Bohr orbits for hydrogen atom; energy of the hydrogen atom in the nth state; line spectra of hydrogen and calculation of ΔE and f for different lines.

(ii) Production of X-rays; maximum frequency for a given tube potential. Characteristic and continuous X -rays. Moseley’s law.

**10. Nuclei**

(i) Atomic masses; Isotopes, Isobars and Isotones; unified atomic mass unit u and its value in MeV; composition and size of nucleus; mass defect and binding energy. Energy – mass equivalence.

(ii) Radioactivity: nature and radioactive decay law, half-life, mean life and decay constant. Nuclear reactions.

**11. Nuclear Energy**

(i) Nuclear fission; chain reaction; principle of operation of a nuclear reactor.

(ii) Nuclear fusion; thermonuclear fusion as the source of the sun’s energy.

**12. Semiconductor Devices**

(i) Energy bands in solids; energy band diagrams for distinction between conductors, insulators and semi-conductors – intrinsic and extrinsic; electrons and holes in semiconductors.

(ii) Junction diode; depletion region; forward and reverse biasing, V-I characteristics; half wave and a full wave rectifier; solar cell, LED and photodiode. Zener diode.

(iii) Junction transistor; npn and pnp transistors; current gain in a transistor and transistor as an amplifier in common emitter mode (only circuit diagram and qualitative treatment); transistor as a switch; oscillator.

(iv) Elementary idea of discreet and integrated circuits, analogue and digital signals. Logic gates (symbols; working with truth tables; applications and uses) – NOT, OR, AND, NOR, NAND. Combination of gates.

**13. Communication Systems**

Propagation of electromagnetic waves in the atmosphere, sky and space wave propagation, need for modulation, amplitude and frequency modulation, bandwidth of signals, bandwidth of transmission medium, basic elements of a communication system (block diagram only).

## Reviews

There are no reviews yet.